-
[1] Scholkmann F, et al. A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology. Neuroimage. 2014. doi: 10.1016/j.neuroimage.2013.05.004.
[2] Boas DA, et al. Twenty years of functional near-infrared spectroscopy: introduction for the special issue. Neuroimage. 2014. doi: 10.1016/j.neuroimage.2013.11.033.
[3] Herold F, et al. Applications of Functional Near-Infrared Spectroscopy (fNIRS) Neuroimaging in Exercise⁻Cognition Science: A Systematic, Methodology-Focused Review. J Clin Med. 2018. doi: 10.3390/jcm7120466.
-
[1] Yücel MA, et al. Best practices for fNIRS publications. Neurophoton. 2021. https://doi.org/10.1117/1.NPh.8.1.012101.
-
[1] Strangman GE, et al. Depth sensitivity and source-detector separations for near infrared spectroscopy based on the Colin27 brain template. PLoS One. 2013. doi: 10.1371/journal.pone.0066319.
[2] Santosa H, et al. Quantitative comparison of correction techniques for removing systemic physiological signal in functional near-infrared spectroscopy studies. Neurophoton. 2020.https://doi.org/10.1117/1.NPh.7.3.035009.
[3] Gregg NM, et al. Brain specificity of diffuse optical imaging: improvements from superficial signal regression and tomography. Front Neuroenergetics. 2010 doi: 10.3389/fnene.2010.00014.
-
[1] Cabrera, L., & Gervain, J. (2020). Speech perception at birth: The brain encodes fast and slow temporal information. Science advances, 6(30), eaba7830.
[2] Liu, Q., Zhu, S., Zhou, X., Liu, F., Becker, B., Kendrick, K. M., & Zhao, W. (2024). Mothers and fathers show different neural synchrony with their children during shared experiences. NeuroImage, 288, 120529.
[3] Kou, J. W., Fan, L. Y., Chen, H. C., Chen, S. Y., Hu, X., Zhang, K., ... & Chou, T. L. (2024). Neural substrates of L2-L1 transfer effects on phonological awareness in young Chinese-English bilingual children. NeuroImage, 291, 120592.
[4] Sagiv, S. K., Bruno, J. L., Baker, J. M., Palzes, V., Kogut, K., Rauch, S., ... & Eskenazi, B. (2019). Prenatal exposure to organophosphate pesticides and functional neuroimaging in adolescents living in proximity to pesticide application. Proceedings of the National Academy of Sciences, 116(37), 18347-18356.
-
[1] How short is short? Optimum source-detector distance for short-separation channels in functional near-infrared spectroscopy. Brigadoi S, Cooper RJ. Neurophotonics. 2015 Apr;2(2):025005. Doi: 10.1117/1.NPh.2.2.025005.
[2] Short-channel functional near-infrared spectroscopy regressions improve when source-detector separation is reduced.James R. Goodwin, Chantel R. Gaudet, and Andrew J. Berger. Neurophotonics. 2014 Jul; 1(1): 015002.
[3] Short separation channel location impacts the performance of short channel regression in NIRS. Gagnon L, Cooper RJ,Yücel MA, Perdue KL, Greve DN, Boas DA. Neuroimage. 2012 Feb 1;59(3):2518-28. doi: 10.1016/j.neuroimage.2011.08.095. Epub 2011 Sep 8.
[4] Hendrik Santosa, Xuetong Zhai, Frank Fishburn, Patrick J. Sparto, Theodore J. Huppert, "Quantitative comparison ofcorrection techniques for removing systemic physiological signal in functional near-infrared spectroscopy studies," Neurophoton.
7(3) 035009 (23 September 2020) https://doi.org/10.1117/1.NPh.7.3.035009.
[5] Strangman, G. E., Li, Z., & Zhang, Q. (2013). Depth sensitivity and source-detector separations for near infrared spectroscopy based on the Colin27 brain template. PloS one, 8(8), e66319.
[6] Zimeo Morais, G. A., Balardin, J. B., & Sato, J. R. (2018). fNIRS Optodes’ Location Decider (fOLD): a toolbox for probe arrangement guided by brain regions-of-interest. Scientific reports, 8(1), 3341.
[7] Tachtsidis I, Scholkmann F. False positives and false negatives in functional near-infrared spectroscopy: issues, challenges, and the way forward. Neurophotonics. 2016. doi: 10.1117/1.NPh.3.3.031405.
[8] Lührs, M., & Goebel, R. (2017). Turbo-Satori: a neurofeedback and brain–computer interface toolbox for real-time functional near-infrared spectroscopy. Neurophotonics, 4(4), 041504-041504.
-
fNIRS-fMRI
[1] Pereira, J., Direito, B., Lührs, M., Castelo-Branco, M., & Sousa, T. (2023). Multimodal assessment of the spatial correspondence between fNIRS and fMRI hemodynamic responses in motor tasks. Scientific Reports, 13(1), 2244.
[2] Klein, F., Debener, S., Witt, K., & Kranczioch, C. (2022). fMRI-based validation of continuous-wave fNIRS of supplementary motor area activation during motor execution and motor imagery. Scientific reports, 12(1), 3570.
[3] Novi, S. L., Carvalho, A. C., Forti, R. M., Cendes, F., Yasuda, C. L., & Mesquita, R. C. (2023). Revealing the spatiotemporal requirements for accurate subject identification with resting-state functional connectivity: a simultaneous fNIRS-fMRI study. Neurophotonics, 10(1), 013510-013510.
[4] Maggioni, E., Molteni, E., Arrigoni, F., Zucca, C., Reni, G., Triulzi, F. M., & Bianchi, A. M. (2013, July). Coupling of fMRI and NIRS measurements in the study of negative BOLD response to intermittent photic stimulation. In 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 1378-1381). IEEE.
fNIRS-EEG
[1] Cao, J., Bulger, E., Shinn-Cunningham, B., Grover, P., & Kainerstorfer, J. M. (2023). Diffuse optical tomography spatial prior for EEG source localization in human visual cortex. NeuroImage, 277, 120210.